Statistical inference for simultaneous clustering of gene expression data
نویسندگان
چکیده
منابع مشابه
Simultaneous Statistical Inference for Epigenetic Data
Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for s...
متن کاملSimultaneous Clustering and Feature Selection Method for Gene Expression Data
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression da...
متن کاملStatistical Issues in the Clustering of Gene Expression Data
This paper illustrates some of the problems which can occur in any data set when clustering samples of gene expression profiles. These include a possible high degree of dependence of results on choice of clustering algorithm, further dependence of results on the choices of genes and samples to be included in the clustering (for example, whether or not to include control samples), and difficulty...
متن کاملBagging Statistical Network Inference from Large-Scale Gene Expression Data
Modern biology and medicine aim at hunting molecular and cellular causes of biological functions and diseases. Gene regulatory networks (GRN) inferred from gene expression data are considered an important aid for this research by providing a map of molecular interactions. Hence, GRNs have the potential enabling and enhancing basic as well as applied research in the life sciences. In this paper,...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Biosciences
سال: 2002
ISSN: 0025-5564
DOI: 10.1016/s0025-5564(01)00116-x